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The well-known Rayleigh criterion is a necessary and sufficient condition for inviscid
centrifugal instability of axisymmetric perturbations. We have generalized this cri-
terion to disturbances of any azimuthal wavenumber m by means of large-axial-
wavenumber WKB asymptotics. A sufficient condition for a free axisymmetric vortex
with angular velocity Ω(r) to be unstable to a three-dimensional perturbation of
azimuthal wavenumber m is that the real part of the growth rate

σ (r) = −imΩ(r) +
√

−φ(r)

is positive at the complex radius r = r0 where ∂σ (r)/∂r = 0, i.e.

φ′(r0) = −2imΩ ′(r0)
√

−φ(r0),

where φ = (1/r3)∂r4Ω2/∂r is the Rayleigh discriminant, provided that some
a posteriori checks are satisfied. The application of this new criterion to various
classes of vortex profiles shows that the growth rate of non-axisymmetric disturbances
decreases as m increases until a cutoff is reached. The criterion is in excellent agreement
with numerical stability analyses of the Carton & McWilliams (1989) vortices and
allows one to analyse the competition between the centrifugal instability and the
shear instability. The generalized criterion is also valid for a vertical vortex in a stably
stratified and rotating fluid, except that φ becomes φ = (1/r3)∂r4(Ω + Ωb)

2/∂r , where
Ωb is the background rotation about the vertical axis. The stratification is found
to have no effect. For the Taylor–Couette flow between two coaxial cylinders, the
same criterion applies except that r0 is real and equal to the inner cylinder radius. In
sharp contrast, the maximum growth rate of non-axisymmetric disturbances is then
independent of m.

1. Introduction
In rotating flows, the equilibrium between the centrifugal force and the radial pres-

sure gradient can be unstable and may give rise to centrifugal instability. By an energy
argument, Rayleigh (1917) has given a necessary condition for the centrifugal instabi-
lity in inviscid fluids, which was strengthened by Synge (1933) to a sufficient condition:
an axisymmetric flow is unstable with respect to axisymmetric three-dimensional
perturbations when the square of the circulation decreases with the radius in some
region of the flow. By means of large-axial-wavenumber asymptotics, Bayly (1988)
has extended the instability condition to general two-dimensional flows: it is sufficient
that the magnitude of the circulation on closed streamlines decreases locally outward.
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However, the Rayleigh criterion only applies to axisymmetric disturbances (or to
disturbances which do not vary along streamlines in the case of the generalized
version of Bayly 1988). No theoretical result exists on non-axisymmetric centrifugal
instabilities in inviscid fluids. As pointed out by Howard & Gupta (1962) and Howard
(1962) (see also Drazin & Reid 1981, § 15.1), the attempt by Chandrasekhar (1961,
§ 67) to show that the necessary and sufficient Rayleigh criterion for axisymmetric
perturbations also applies to non-axisymmetric disturbances is incorrect. For example,
Smyth & McWilliams (1998) and Gallaire & Chomaz (2003) have investigated
numerically the stability of the Carton & McWilliams (1989) vortex profiles and
shown that only the first azimuthal modes are unstable with growth rates smaller
than for the axisymmetric mode. Regarding the Couette flow in the inviscid limit,
Krueger & DiPrima (1962) and Bisshopp (1963) have shown, in some limiting cases
(narrow gap, small azimuthal wavenumber), that the axisymmetric mode is always
more unstable than non-axisymmetric modes for a given axial wavenumber.

The goal of the present paper is to extend the Rayleigh criterion to non-
axisymmetric perturbations following an approach similar to the recent analysis of
Kelvin waves by Le Dizès & Lacaze (2005). Unstable eigenmodes are constructed for
large axial wavenumber using the WKB method (Bender & Orszag 1978) analogously
to the methods used to find approximate solutions of Schrödinger’s equation in
quantum mechanics.

2. Stability equations
We consider a basic flow with velocity components [0, Uθ (r), 0] in cylindrical

coordinates (r, θ, z) in an inviscid and incompressible fluid. We subject this basic flow
to infinitesimal three-dimensional velocity perturbations u′ written in the form

u′(r, θ, z, t) = [ur (r), uθ (r), uz(r)]e
σ t+ikz+imθ + c.c. (2.1)

where σ is the complex growth rate, k the axial wavenumber, m the azimuthal
wavenumber and c.c. denotes the complex conjugate. Defining ψ = ur

√
r/Q where

Q = k2 + (m2/r2), the linearized equations of motion for these perturbations can be
reduced to a single equation for ψ (Drazin & Reid 1981)

d2ψ

dr2
= Bψ, (2.2)

with

B = −m2(m2 + 4k2r2)

r2(r2k2 + m2)2
+

3

4r2
+

m2

r2
+ k2 S2 + φ

S2
+

im

r2S

(
rζ ′ − 2ζ

k2r2

m2 + k2r2

)
, (2.3)

where Ω = Uθ/r is the angular velocity of the basic state, ζ =(1/r)∂rUθ/∂r its axial
vorticity, φ = 2Ωζ the Rayleigh discriminant and S = σ + imΩ . In most of the paper,
we consider a free vortex in an infinite medium so that the boundary conditions are
ur → 0 as r → ∞ and, at r =0, ur = 0 if |m| �= 1 or ∂ur/∂r = 0 if |m| =1. This implies
the boundary conditions ψ(0) = 0 and ψ → 0 as r → ∞ whatever m. The particular
case of the Couette flow between two coaxial cylinders will be treated in § 7.

3. WKB stability analysis for large axial wavenumber
The present analysis stems from the fact that, for large axial wavenumber k, the

function B is of the form

B(r) = k2B0(r) + O(1) with B0 = 1 +
φ

S2
. (3.1)
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This behaviour allows one to use a WKB approach to find approximate solutions of
(2.2). We stress that only unstable eigenmodes (Re(σ ) > 0) will be considered so that
no singularity of B0 where S = 0 exists for real radius. For clarity, we first present the
case of axisymmetric modes. Non-axisymmetric modes will be considered in § 3.2.

3.1. Axisymmetric perturbations

The case of axisymmetric modes is simpler because the function B0(r) is real for
real radius and growth rate. According to WKB theory (see for example, Bender &
Orszag 1978, § 10.5; Le Dizès & Lacaze 2005), it is possible to construct a localized
eigenmode satisfying the boundary conditions if we assume that there exist two
turning points at r1 and r2 (with the convention r1 < r2) where B0(r1) = B0(r2) = 0
enclosing a region where B0 is negative. For unstable modes (i.e. Re(σ ) > 0) to exist,
this requires that φ reaches a negative minimum between r1 and r2. In this interval, the
WKB approximations of the solution of (2.2) are oscillatory. Outside this region, for
r < r1 and r > r2, B0 is positive so that the two WKB approximations are exponentially
growing or decaying. For 0 <r < r1, we retain only the WKB approximation which
decays as r → 0:

ψ1(r) =
C

(B0(r))1/4
exp

(
−k

∫ r1

r

√
B0(u) du + O

(
1

k

))
, (3.2)

where C is a constant. When r1 is not too close to the vortex axis (i.e. r1 � 1/k),
Le Dizès & Lacaze (2005) have shown that this approximation can be matched to
Bessel functions which are valid in the axis neighbourhood for rk =O(1) and ensure
the boundary condition at r = 0. At the turning point r1, the WKB approximation
breaks down and should be replaced by Airy functions. For r1 <r < r2, the WKB
approximation of the solution of (2.2) which matches the approximation for r < r1

through the Airy functions at the turning point is

ψ2 =
2C

(−B0(r))1/4
sin

(
k

∫ r

r1

√
−B0(u) du +

π

4

)
, (3.3)

where classical connection formulae have been used (Bender & Orszag 1978). Note
that the sine factor in (3.3) also neglects O(1/k) terms, but the O(1/k) symbol will
be omitted from now on for brevity. For r > r2, we select the approximation which
decays as r → ∞:

ψ3 =
D

(B0(r))1/4
exp

(
−k

∫ r

r2

√
B0(u) du

)
, (3.4)

where D is a constant. Using connection formulae through the turning point r2, this
function matches a WKB approximation for r1 < r < r2 of the form

ψ ′
2 =

2D

(−B0(r))1/4
sin

(
k

∫ r2

r

√
−B0(u) du +

π

4

)
. (3.5)

The last condition is that ψ2 and ψ ′
2 should be identical in the interval r1 < r < r2,

which implies that D = |C| and that a quantization condition

k

∫ r2

r1

√
−B0(u) du = nπ +

π

2
+ O

(
1

k

)
, (3.6)

is satisfied, where n is a non-negative integer which corresponds to the number of
oscillations between the two turning points. Since k � 1, this quantization condition
can be satisfied for n= O(1) only if the two turning points r1 and r2 are very close and
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separated by a distance r2 − r1 = O(1/
√

k). Therefore, it is legitimate to approximate
B0 between the two turning points by its Taylor expansion around the radius r∗

where B0 is minimum: B0(r) = B0(r
∗) + B ′′

0 (r∗)(r − r∗)2/2 + · · · . Using this quadratic
approximation and (3.1), (3.6) can be integrated and yields directly

σ =

√
−φ(r∗) + (2n + 1)2

φ′′(r∗)

8k2
− 2n + 1

2
√

2

√
φ′′(r∗)

k
+ O

(
1

k2

)
, (3.7)

where r∗ is defined by φ′(r∗) = 0. This expression is strictly valid only to O(1/k2)
and is therefore non-consistent. However, we shall see below that it proves to be
very close to the integral dispersion relation (3.6) and in excellent agreement with the
exact results even for k = O(1) for the vortex profiles investigated. The corresponding
consistent expression

σ =
√

−φ(r∗) − 2n + 1

2
√

2k

√
φ′′(r∗) + O

(
1

k2

)
, (3.8)

is identical to the local result of Bayly (1988) for axisymmetric streamlines. Because
φ′′(r∗) > 0 by our assumption that φ has a negative minimum, the maximum growth
rate is obtained when k → ∞ and for the lowest mode n= 0. Therefore, a sufficient
condition to have unstable axisymmetric eigenmodes is that the minimum of φ is
negative, thereby retrieving the sufficient condition for centrifugal instability associated
with the Rayleigh criterion.

In figure 1, the asymptotic dispersion relation (3.6) for the most unstable mode
(n= 0) is compared to the exact growth rate in the case of the Carton & McWilliams
(1989) vortex profiles:

Uθ = r exp (−rα), (3.9)

for the parameter values α =2 and α = 4. As illustrated in Carnevale & Kloosterziel
(1999) or Gallaire & Chomaz (2003), these vortices are surrounded by a ring of
opposite vorticity making then centrifugally unstable for all α > 0. A comparison
of figures 1(a) and 1(b) shows that the maximum growth rate of the axisymmetric
mode m = 0 increases with α (the y-axis scale differs for the two plots). The exact
growth rate has been obtained by solving numerically (2.2) using a Chebyshev pseudo-
spectral collocation method, with the collocation points in the interval y ∈ [−1, 1]
being mapped to the interval r ∈ [0, rmax] through r =2(1+y)/(1 − y +4/rmax), where
rmax = 10. The number of collocation points has been set to N = 100, allowing for
convergence. The accuracy of the computation has been checked by an independent
shooting method. Figure 1 shows that the integral dispersion relation (3.6) provides
extraordinarily accurate results even for small values of k: it is indistinguishable
from the exact result. For α = 2 (figure 1a), we also show the non-consistent and
consistent quadratic approximations (3.7) and (3.8). The non-consistent quadratic
approximation (3.7) is very close to the growth rate given by the integral dispersion
relation (3.6), demonstrating that the quadratic approximation is legitimate. The
consistent quadratic approximation (3.8) is also in good agreement at large axial
wavenumbers but differs for k = O(1).

3.2. Non-axisymmetric perturbations

We now consider the general case where m �= 0. The function B0(r) is then complex
when r is real implying that the turning points will be complex. Thus, when
constructing an eigenmode valid for real r , no turning point will be encountered along
the real-r axis so that one might think that either of the two WKB approximations
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Figure 1. Comparison between the asymptotic dispersion relations and the exact growth rates
for the Carton & McWilliams vortex for (a) α = 2 and (b) α = 4. For each unstable azimuthal
wavenumber, the exact growth rate is shown by a heavy solid line and the asymptotic growth
rate given by (3.15) by a thin solid line (——). For (a), the different asymptotic approximations
are also shown: – · –, (3.16); – – –, (3.17 a); · · · ·, (3.18). Note that the asymptotic growth rate
for m = 0 can also be obtained from the relations derived in § 3.1: ——, (3.6); – · –, (3.7); – – –,
(3.8).

of the solution of (2.2),

ψ(r) =
C

(B0(r))1/4
e±k∆(r) where ∆(r) =

∫ r

r1

√
B0(u) du, (3.10a, b)

would be valid throughout the whole real axis (the lower bound r1 of the integral
is chosen to be a complex turning point without loss of generality). However, if
there exists a real radius r̃1 such that Re(∆(r̃1)) = 0, an exponentially growing WKB
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Figure 2. Example of the Stokes lines (shown by heavy lines) network for the Carton &
McWilliams vortex for α = 2, m= 1 and k = 10. The double turning point r0 for k → ∞ is shown
by ×, the point r∗ by 
 and the two turning points r1 and r2 by �. The short lines indicate the
direction of the characteristics Re(∆) = const. The branch cuts are represented by wavy lines.

approximation for r < r̃1 becomes exponentially decaying for r > r̃1 and vice versa.
This means that, at r̃1, we can switch to the other WKB approximation or to a
combination of the two. The equation

Re(∆(r)) = 0 (3.11)

is the definition of the Stokes lines which delimit the domains in the complex plane
where the WKB approximations keep the same behaviour (Bender & Orszag 1978;
Olver 1974). Three Stokes lines emanate from a simple turning point.

In order to construct an eigenmode on the real axis, we shall assume that there
exist two complex turning points r1 and r2 and that for each of them, one emanating
Stokes line crosses the real axis at respectively r̃1 and r̃2, as illustrated in figure 2.
Then, the approach closely follows the one for m =0. On the real axis, for 0 < r < r̃1,
we select the decaying WKB approximation

ψ1 =
C

(B0(r))1/4
exp

(
−k

∫ r1

r

√
B0(u) du

)
. (3.12)

Even if the turning point r1 is now complex, the matching WKB approximation for
r̃1 < r < r̃2 has the same form as (3.3) (Olver 1974):

ψ2 =
2C

(−B0(r))1/4
sin

(
k

∫ r

r1

√
−B0(u) du +

π

4

)
. (3.13)

Finally, the solution is restricted to the decaying WKB approximation for r > r̃2:

ψ3 =
D

(B0(r))1/4
exp

(
−k

∫ r

r2

√
B0(u) du

)
. (3.14)

The matching between (3.13) and (3.14) at the turning point r2 imposes the same
quantization condition as for m =0,

k

∫ r2

r1

√
−B0(u) du = nπ +

π

2
+ O

(
1

k

)
, (3.15)
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except that (r1, r2) and B0 are now complex. A by-product of this condition is
Re(∆(r2)) = 0 meaning that the two turning points r1 and r2 must be connected by a
Stokes line (figure 2). As for m =0, r1 and r2 should be very close for large k, allowing
a Taylor expansion of B0 around the complex radius r∗ where B ′

0(r
∗) = 0. This yields

k
B0(r

∗)√
B ′′

0 (r∗)
= −2n + 1√

2
+ O

(
1

k

)
. (3.16)

The implicit dispersion relation (3.15) together with B0(r1) = B0(r2) = 0 or (3.16)
together with B ′

0(r
∗) = 0 can be solved numerically by an iterative Newton–Raphson

method: for a given value of the growth rate σr , the frequency σi is determined such
that Im(k) vanishes. Note that the branch cuts of the square root in (3.15) are chosen
such that they do not cross the integration path between r1 and r2 (see figure 2).

However, σ and r∗ can be obtained explicitly in the form

σ = σ0 +
σ1

k
+ · · · , r∗ = r0 +

r1

k
+ · · · , (3.17a, b)

where

σ0 = −imΩ(r0) +
√

−φ(r0), (3.18)

σ1 = −2n + 1

2
√

2

√
φ′′(r0) − 2m2Ω ′2(r0) + 2im

√
−φ(r0)Ω ′′(r0), (3.19)

and r0 is a double turning point where the r-derivative of σ0(r) ≡ −imΩ(r)+
√

−φ(r)
vanishes:

φ′(r0) = −2imΩ ′(r0)
√

−φ(r0). (3.20)

This allows us to generalize the Rayleigh criterion to non-axisymmetric disturbances:
Generalized Rayleigh criterion: A sufficient condition for a perturbation with an
azimuthal wavenumber m to be unstable is that the real part of the growth rate σ0 given
by (3.18) is positive at the complex radius r0 defined by (3.20).

It should be stressed that this criterion is valid only if there exist two Stokes lines
which cross the real axis as in figure 2. In addition, the WKB approximations should
be uniformly valid on the real axis in each interval. However, as explained by Le
Dizès & Lacaze (2005), the above criterion is expected to remain valid if there exist
two contours connecting r0 to 0 and r0 to ∞ on which the WKB approximations are
uniformly valid, i.e. Re(∆) is monotonic (Olver 1974). These two conditions should
be checked a posteriori. For all the vortex profiles investigated, we have observed that
only the double turning point r0(m) which derives continuously (assuming m real)
from the one for m =0 satisfies these conditions.

Figure 1(a) compares the different asymptotic growth rates given by (3.15), (3.16)
and (3.17a) for m =1 and m =2 to the exact growth rates for the Carton & McWilliams
vortex (3.9) for α =2. The agreement between the three asymptotic formulae and the
numerical results is excellent for large axial wavenumber, the integral form (3.15)
and the non-consistent quadratic approximation (3.16) being the most accurate. For
small k, the agreement continues to be satisfactory for m = 1 whereas, for m =2, the
asymptotic growth rate goes to zero for k ≈ 3 while the exact growth rate remains
positive at k = 0. This difference is due to the two-dimensional (k =0) shear instability
(see § 5) which is not captured by the present analysis strictly valid for k � 1.

The same trends are seen in figure 1(b) for the value α =4: the asymptotic growth
rate given by (3.15) is in excellent agreement with the exact growth rates except at
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small axial wavenumber for m = 2 and m = 3 because of the two-dimensional shear
instability. Figure 1(a, b) also shows that the maximum growth rate of each mode
decreases with m but increases with α. Strikingly, no instability has been found for
m � 4 when α = 4 and for m � 3 when α = 2, in agreement with Smyth & McWilliams
(1998). These features will be further investigated in the next section.

4. Analytical results
The maximum growth rate (3.18) can be determined analytically in the case of the

Carton & McWilliams vortex profiles (3.9) for any value of α:

σ0 =
1

2
exp

[
− 1

4α
(8 + 2α − m2 + im

√
4α − m2)

]
(
√

4α − m2 − im). (4.1)

As seen in (4.1) and in figure 3(a), the real part of the growth rate σ0r is positive and
maximum for m = 0 and continuously decreases with m until the cutoff mc =2

√
α. This

azimuthal wavenumber cutoff explains why only the modes 0 � m � 2 were found
to be unstable for α = 2 (figure 1a) and the modes 0 � m � 3 for α = 4 (figure 1b).
It is worth emphasizing that this cutoff is not due to a viscous damping, contrary to
what was suggested by Gallaire & Chomaz (2003). It can be checked that ∂σ0r/∂m

is negative for all m and α, demonstrating that the axisymmetric mode is always the
most unstable. This feature seems generic. For example, the axisymmetric mode is
also the most unstable mode for the vortex profiles Uθ = r/(1+rb) and Uθ = r/(1+r2)b

introduced by Gent & McWilliams (1986). The cutoff azimuthal wavenumbers are
mc =

√
6(b − 2) and mc = 2

√
(b − 1)(1 + 2b)/b respectively.

For arbitrary vortex profiles, it is possible to make two general statements regarding
the dominance of the axisymmetric mode. First, we deduce from (3.18) and (3.20)
that

∂σ0

∂m
= −iΩ(r0), (4.2)

∂2σ0

∂m2
=

2Ω ′2(r0)φ(r0)

φ′′(r0)
√

−φ(r0) − im(Ω ′′(r0)φ(r0) + Ω ′(r0)φ′(r0))
, (4.3)

using implicit differentiation. Because Ω(r0) is real for m =0, we have ∂σ0r/∂m = 0 for
m =0. In addition, φ′′(r0) > 0 for m =0 because r0 is a minimum of φ, implying that
∂2σ0/∂m2 is real and negative. Thus, m =0 is a local maximum of the curve σ0r (m).

Second, we show that non-axisymmetric modes cannot be more unstable than the
m =0 mode by demonstrating that

√
−min(φ) is an upper bound of the growth

rate for any azimuthal wavenumber m in the large-axial-wavenumber limit. By multi-
plying equation (2.2) by the complex conjugate ψ∗ and by integrating from zero to
infinity, we obtain after an integration by parts

−
∫ ∞

0

∣∣∣∣dψ

dr

∣∣∣∣
2

dr = k2

∫ ∞

0

B0|ψ |2 dr, (4.4)

for k � 1. This shows that a necessary condition for ψ to be non-zero is that the
real part of B0 be negative for some radius: Re(B0) = 1 + φ(S2

r − S2
i )/(S

2
r + S2

i )
2 < 0,

where S = Sr +iSi . Since Re(B0) is bounded by its value for Si =0 when φ is negative,
one has (φ + S2

r )/S
2
r <Re(B0) < 0. This directly implies the necessary condition that

S2
r < −min(φ) independently of m.
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Figure 3. (a) Growth rates of the centrifugal instability for k = ∞ (solid line) and shear instabi-
lity for k = 0 (dashed line) for the Carton & McWilliams vortices (3.9) for α = 8. (b) Maximum
growth rates (solid lines) and azimuthal cutoff wavenumbers (dashed lines) of the centrifugal
and shear instabilities as a function of α. The results for α > 30 for the shear instability (lines)
have been obtained by extrapolating the numerical results for α < 30 (symbols) by a linear fit.

5. Competition between the centrifugal and shear instabilities
Besides being unstable to the three-dimensional centrifugal instability, the Carton &

McWilliams vortices (3.9) are also unstable in the two-dimensional limit with respect
to the shear instability as seen in figure 1. The competition between these two different
instabilities is illustrated in figure 3(a) for α =8. For this value of α, the centrifugal
instability (for k = ∞) is the most unstable for m =0 and occurs in the azimuthal
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wavenumber band 0 � m � 5. The shear instability (for k =0) exists for 2 � m � 6 and
is maximum for m =3.

The competition is further analysed as a function of α in figure 3(b), where the
maximum growth rate σc(α) ≡ σ0 of the centrifugal instability given by (4.1) for m = 0
and the cutoff wavenumber mc(α) = 2

√
α are compared to the maximum growth rate

of the shear instability σs(α) and the associated upper cutoff wavenumber ms(α)
obtained numerically (note that the lower cutoff remains always equal to m =1). For
the centrifugal instability, both σc ∼ e−1/2

√
α and mc scale like

√
α. In contrast, σs(α)

and ms(α) are seen to vary linearly with α in agreement with the results of Carnevale &
Kloosterziel (1994) for α < 10. This linear dependence can be physically understood by
drawing an analogy between a plane shear and the radial shear in circular geometry.
It is known from plane shear layer instability theory (see Drazin & Reid 1981) that
both the growth rate and the cutoff wavenumbers scale like the inverse of the shear
layer thickness δ. For the Carton & McWilliams vortex profile, it is easy to show that
the shear layer thickness scales like the inverse of α, implying σs ∼ α and ms ∼ α. As
a result of these scaling laws, the two-dimensional shear instability is expected to be
more unstable than the three-dimensional centrifugal instability for large values of α.
In practice, the prefactors are such that this occurs only for very high values: α > 68.
However, when α > 6.25, the azimuthal cutoff wavenumber ms of the shear instability
is larger than the cutoff mc of the centrifugal instability (figure 3b).

6. Further generalization to stably stratified and rotating fluids
The additional effects due to a background rotation about the vertical axis and

a stable stratification under the Boussinesq approximation can be easily taken into
account in the generalized Rayleigh criterion in the case of a vertical vortex.

The function B corresponding to (2.3) becomes

B = −H ′′

H
+ 2

H ′2

H 2
+

m2

r2
+ k2 S2 + φg

S2 + N 2
+

im

r2S

[
rζ ′ − 2(ζ + 2Ωb)

(
rQ′

Q
+ 2

)]
, (6.1)

where H =
√

rQ, Q =(k2S2/(S2 + N2)) + m2/r2, N is the Brunt–Väisälä frequency,
φg = (2Ω + 2Ωb)(ζ + 2Ωb) is the generalized Rayleigh discriminant (Kloosterziel &
van Heijst 1991) and Ωb is the angular velocity of the frame of reference. Thus, we
now have B0 = (S2 + φg)/(S

2 + N2). Following the same reasoning as in § 3.2 leads to
the same quantization condition as (3.15), i.e.†

k

∫ r2

r1

√
− S2 + φg

S2 + N2
du = nπ +

π

2
. (6.2)

Using the quadratic approximation and expanding the growth rate in powers of 1/k

as in (3.17),

σ = σ0 +
σ1

k
+ · · · , (6.3)

yields

σ0 = −imΩ(r0) +
√

−φg(r0), (6.4)

σ1 = −2n + 1

2
√

2

√
φ′′

g (r0) − 2m2Ω ′(r0)2 + 2im
√

−φg(r0)Ω ′′(r0)

√
1 − N2

φg(r0)
, (6.5)

† The hypothesis that the turning point r1 is not too close to the vortex axis might not be valid
for some marginal values of Ωb . These particular cases are outside the scope of the present paper.



Rayleigh criterion for non-axisymmetric centrifugal instabilities 375

where r0 is given by

φ′
g(r0) = −2imΩ ′(r0)

√
−φg(r0). (6.6)

The first term σ0 and the equation giving r0 are identical to (3.18) and (3.20) respec-
tively, except that φ is replaced by the generalized Rayleigh discriminant φg . The
only difference shows up in the last term of (6.5) where the Brunt–Väisälä frequency
appears. Therefore, the generalized Rayleigh criterion for non-axisymmetric centri-
fugal instabilities is modified only by the background rotation through the generalized
Rayleigh discriminant φg . The stratification plays a role only in the growth rate
dependence on the axial wavenumber k.

Figure 4 compares the different asymptotic growth rates to the exact growth rates
for the Carton & McWilliams vortex for two examples: a stratified fluid N = 0.5 and a
rotating fluid Ωb = −0.1. For the axisymmetric mode m =0 (figure 4a), the growth rate
given by (6.2) is indistinguishable from the exact growth rate. Expression (6.3) is also
in very good agreement except at low axial wavenumbers for the rotating case Ωb =
−0.1. For m =1 (figure 4b), the agreement is satisfactory except at low wavenumbers
for the stratified case N = 0.5: the asymptotic growth rates (6.2) and (6.3) go to zero
for k ≈ 3 instead of k = 0. These two examples confirm that the stratification does not
affect the growth rate at large axial wavenumbers whereas the background rotation
does, as predicted by the asymptotic analysis. Inversely, it is interesting to see that the
stratification has a significant effect at low axial wavenumbers while the background
rotation tends to have no effect. This is in full agreement with the stability analysis
of Smyth & McWilliams (1998).

7. Taylor–Couette flow
The case of the Taylor–Couette flow between two cylinders of radii R1 <R2 rotating

at angular velocities Ω1 and Ω2 is peculiar because the Rayleigh discriminant,
although negative for some radius, has no radius r∗ where its derivative vanishes.
Therefore, a specific analysis is needed to derive the generalized criterion for this flow.
We only consider here the case of an homogeneous fluid.

The angular velocity of the Couette flow is given by

Ω = E + F/r2

with

E = Ω1(µ − η2)/(1 − η2), F = Ω1R
2
2η

2(1 − µ)/(1 − η2), µ = Ω2/Ω1, η = R1/R2

(Chandrasekhar 1961). The Rayleigh discriminant

φ = 4Ω2
1η

2 (1 − µ)(µ − η2)

(1 − η2)2

(
R2

2

r2
− β

)
, (7.1)

where β =(η2 − µ)/((1 − µ)η2), can be negative only if µ<η2. If such a condition
is satisfied, φ increases monotonically with r and is negative between r = R1 and
r = min(R2/

√
β, R2). Therefore, when m = 0, there is at most one turning point r1

where B0 = 0. When m �=0, there exist two complex turning points but to construct
valid unstable eigenmodes, it is sufficient to consider only the turning point r1 which
derives continuously from the one for m = 0 and which has a Stokes line crossing the
real axis at r = r̃1 such that R1 < r̃1 (figure 5).

The matching WKB approximations are

ψ1(r) = (−B0(r))
−1/4

[
2C sin

(
kγ (r) +

π

4

)
+ D cos

(
kγ (r) +

π

4

)]
for r < r̃1, (7.2)

ψ2(r) = (B0(r))
−1/4

[
Ce−kλ(r) + Dekλ(r)

]
for r > r̃1, (7.3)
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Figure 4. Growth rates of the azimuthal wavenumbers (a) m= 0 and (b) m= 1 for the Carton
& McWilliams vortex for α = 2 in a stably stratified fluid (N = 0.5,Ωb = 0) or rotating fluid
(N = 0,Ωb = −0.1). For each case, the exact growth rate is represented by a heavy solid line
and the asymptotic growth rates are shown by: ——, (6.2); – – –, (6.3); · · · ·, (6.4). For reference,
the exact growth rate in the homogeneous case (N = 0,Ωb =0) is also shown by a heavy
dashed line.

where

γ (r) =

∫ r1

r

√
−B0(u) du, λ(r) =

∫ r

r1

√
B0(u) du

and (C, D) are constants.
When the axial wavenumber k is not large and µ � 0, it is possible that the Stokes

line crosses the real axis outside the outer cylinder, i.e. r̃1 >R2. The WKB approxi-
mation (7.2) is then valid throughout the interval R1 < r < R2. Therefore, the boundary

conditions are ψ1(R1) = ψ1(R2) = 0 imposing the condition k
∫ R2

R1

√
−B0(u) du = π+nπ.
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Figure 5. Example of the Stokes lines (shown by heavy lines) network for the Couette flow
for η = 0.9, µ= − 1, m= 4 and σ/

√
−φ(R1) = 0.3086 − 0.3767i. Circles are turning points, the

square indicates r̃1 and the star is a singular point where S = 0; short and wavy lines and are
as in figure 2.

It can be checked that this particular condition agrees with the results of Krueger &
DiPrima (1962) for µ → 1.

However, we are interested here in the case k � 1 for which r̃1 <R2. The boundary
conditions are thus ψ1(R1) = 0 and ψ2(R2) = 0, imposing the condition

tan(kγ (R1) + π/4) = e−2kλ(R2)/2,

i.e. at leading order in k

kγ (R1) = k

∫ r1

R1

√
−B0(u) du = nπ +

3π

4
+ O

(
1

k

)
, (7.4)

where n is a non-negative integer. This condition imposes Im(γ (R1)) = 0, implying
that the points R1 and r1 are connected by a Stokes line (figure 5). When k is large, the
condition (7.4) will be satisfied only if r1 is close to R1 so that B0 can be approximated
by its Taylor expansion around R1: B0(r) = B0(R1) + (r − R1)B

′
0(R1) + O((r − R1)

2).
Upon integration, this leads to

2k
(−B0(R1))

3/2

3B ′
0(R1)

= nπ +
3π

4
. (7.5)

For m =0, (7.5) can be rewritten(
k̃σ̃ 2

1 − µ

)2/3 [
1 − 1

σ̃ 2

]
= −(3π(4n + 3)/8)2/3, (7.6)

where σ̃ = σ/
√

−φ(R1) and k̃ = kR1(1−η2)/2. This result is very close to the small-gap
formula for k � 1 (Drazin & Reid 1981, § 16) if one notes that ãn = −(3π(4n+3)/8)2/3

approximate the zeros an of the Airy function Ai of the small-gap formula: for
n= 0, we have ã0 = −2.320 instead of a0 = −2.338, for n= 1, ã1 = −4.081 instead of
a1 = −4.088, etc. For m =0 and finite values of k, figure 6 shows that (7.4) provides
an extraordinarily accurate approximation of the numerical results, better than the
small-gap formula. For small m and k � 1, it can be verified that (7.5) also fully agrees
with the asymptotic study of Bisshopp (1963). For finite values of m, the agreement
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Figure 6. Normalized growth rates Re(σ̃ ) = Re(σ )/
√

−φ(R1) of the m= (0, 2, 4, 5, 6)
azimuthal wavenumbers for the Couette flow for η = 0.9, µ= −1: ——, exact results obtained
numerically; – – –, (7.4); – · –, small-gap formula for m= 0.

between (7.4) and the exact growth rates is excellent but tends to degrade at low k as
m increases (figure 6).

For large axial wavenumber, the growth rate can be obtained explicitly as

σ =
√

−φ − imΩ − 1

8k2/3
√

−φ
[3π(4n + 3)(φ′

√
−φ − 2imΩ ′φ)]2/3 + · · · , (7.7)

where all the quantities are evaluated at r = R1. The maximum growth rate is therefore
given by

√
−φ(R1), which is just the minimum of φ reached at the inner cylinder

boundary r = R1. This is analogous to the case of free vortices (§ 3) even though the
derivative of φ never vanishes. However, an important difference is that (7.7) also
implies that the maximum growth rate is the same for all m, in sharp contrast with
the results of § § 3 and 4.

The leading-order dependence of the growth rate on the axial wavenumber is of
the form k−2/3 instead of k−1 for free vortices, as recently obtained by Leblanc &
Le Duc (2005) with a different approach.

8. Conclusions
In this paper, we have generalized the Rayleigh criterion for centrifugal axisym-

metric instabilities to non-axisymmetric perturbations by using WKB approximations
for large axial wavenumber.

For unbounded vortices, the maximum growth rate of a perturbation with an
azimuthal wavenumber m has been found to be σ0 = −imΩ(r0) +

√
−φ(r0) where r0

is a complex radius given by φ′(r0) = −2imΩ ′(r0)
√

−φ(r0). A sufficient condition for
instability is therefore that the real part of σ0 is positive. This generalized criterion
also applies to a vertical vortex in a stably stratified and rotating fluid except that
φ should be replaced by the generalized Rayleigh discriminant. The criterion is not
valid for any complex radius r0 satisfying the above condition. It is further required
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that two Stokes lines emanating from r0 cross the real axis and that the WKB
approximations are uniformly valid for real radius.

In the case of the Carton & McWilliams vortices, the generalized criterion shows
that non-axisymmetric perturbations are less unstable than the axisymmetric one
and, more surprisingly, that they are stable above a relatively low cutoff azimuthal
wavenumber. A numerical stability analysis fully confirms this result and shows a
remarkable agreement between the asymptotic and exact growth rates even at low
axial wavenumbers except for the azimuthal wavenumbers unstable with respect to
the two-dimensional shear instability.

For the specific case of the Taylor–Couette flow, the same WKB approach shows
that the maximum growth rate of non-axisymmetric perturbations is independent of
m because the radius r0 is real and equal to the inner cylinder radius R1. For finite
axial wavenumber, the asymptotic growth rate also gives excellent predictions without
requiring the small-gap approximation.

Further extensions to swirling jets are in progress.

We are indebted to Stéphane Le Dizès for fruitful discussions and for providing us
with a draft of his paper with Laurent Lacaze while this work was in progress. We
thank Colm Caulfield for careful reading of the manuscript.
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